Questions

Q1.

A student was asked to give the exact solution to the equation

$$2^{2x+4} - 9(2^x) = 0$$

The student's attempt is shown below:

 $2^{2x+4} - 9(2^{x}) = 0$ $2^{2x} + 2^{4} - 9(2^{x}) = 0$ Let $2^{x} = y$ $y^{2} - 9y + 8 = 0$ (y - 8)(y - 1) = 0 y = 8 or y = 1So x = 3 or x = 0

(a) Identify the two errors made by the student.

(b) Find the exact solution to the equation.

(2)

(2)

(Total for question = 4 marks)

Q2.

Find, using algebra, all real solutions to the equation

(i)
$$16a^2 = 2\sqrt{a}$$
 (4)

(ii)
$$b^4 + 7b^2 - 18 = 0$$

(4)

(Total for question = 8 marks)

Surds and Indices - Year 1 Core

PhysicsAndMathsTutor.com

Q3.

In this question you must show all stages of your working.

Solutions relying on calculator technology are not acceptable.

(i) Solve the equation

$$x\sqrt{2} - \sqrt{18} = x$$

writing the answer as a surd in simplest form.

(ii) Solve the equation

$$4^{3x-2} = \frac{1}{2\sqrt{2}}$$

(3)

(3)

(Total for question = 6 marks)

Q4.

In this question you should show all stages of your working.

Solutions relying on calculator technology are not acceptable.

Given

$$\frac{9^{x-1}}{3^{y+2}} = 81$$

express *y* in terms of *x*, writing your answer in simplest form.

(Total for question = 3 marks)

Surds and Indices - Year 1 Core

Q5.

Find

$$\int \frac{3x^4 - 4}{2x^3} \, \mathrm{d}x$$

writing your answer in simplest form.

(Total for question = 4 marks)

Surds and Indices - Year 1 Core

Q6.

Given

$$2^x \times 4^y = \frac{1}{2\sqrt{2}}$$

express y as a function of x.

(Total for question = 3 marks)

<u>Mark Scheme</u>

Q1.

Question	Scheme		Marks	AOs
(a)	$2^{2x} + 2^4$ is wrong in line 2 - it should be $2^{2x} \times 2^4$		B1	2.3
	In line 4, 2 ⁴ has been replaced by 8 instead of by 16		B1	2.3
			(2)	
(b)	Way 1 $2^{2x+4} - 9(2^{x}) = 0$ $2^{2x} \times 2^{4} - 9(2^{x}) = 0$ Let $2^{x} = y$ $16y^{2} - 9y = 0$	Way 2 $(2x+4)\log 2 - \log 9 - x\log 2 = 0$	M1	2.1
	$y = \frac{9}{16} \text{ or } y = 0$ So $x = \log_2\left(\frac{9}{16}\right)$ or $\frac{\log\left(\frac{9}{16}\right)}{\log 2}$ o.e. with no second answer.	$x = \frac{\log 9}{\log 2} - 4 \text{ o.e.}$	A1	1.1b
			(2)	
			(4	marks)
	Notes			
	Lists error in line 2 (as above)			
	: Lists error in line 4 (as above) : Correct work with powers reacl	ning this equation		
	A1 : Correct answer here – there are many exact equivalents			

Question	Scheme		Marks	AOs
(i)	$16a^2 = 2\sqrt{a} \Rightarrow a^{\frac{3}{2}} = \frac{1}{8}$	$16a^{2} - 2\sqrt{a} = 0$ $\Rightarrow 2a^{\frac{1}{2}} \left(8a^{\frac{3}{2}} - 1 \right) = 0$ $\Rightarrow a^{\frac{3}{2}} = \frac{1}{8}$	M1	1.1b
	$\Rightarrow a = \left(\frac{1}{8}\right)^{\frac{2}{3}}$	$\Rightarrow a = \left(\frac{1}{8}\right)^{\frac{2}{3}}$	M1	1.1b
	$\Rightarrow a = \frac{1}{4}$	$\Rightarrow a = \frac{1}{4}$	A1	1.1b
	Deduces that a	a = 0 is a solution	B1	2.2a
			(4)	
(ii)	(ii)		M1	1.1b
			A1	1.1b
			dM1	2.3
	$b = \sqrt{2}$, $-\sqrt{2}$	only	A1	1.1b
			(4)	
	•		(8	marks)

- · no working, just answer(s) with they can score the B1
- If they square and proceed to the quartic equation $256a^4 = 4a$ oe, and then write down the answers they can have access to all marks.

In part (ii)

- Accept for 4 marks $b^2 = 2 \Rightarrow b = \pm \sqrt{2}$
- No working, no marks.

Q 3.

Question	Scheme	Marks	AOs
(i)	$x\sqrt{2} - \sqrt{18} = x \Longrightarrow x \left(\sqrt{2} - 1\right) = \sqrt{18} \Longrightarrow x = \frac{\sqrt{18}}{\sqrt{2} - 1}$	M1	1.1b
	$\Rightarrow x = \frac{\sqrt{18}}{\sqrt{2} - 1} \times \frac{\sqrt{2} + 1}{\sqrt{2} + 1}$	dM1	3.1a
	$x = \frac{\sqrt{18}\left(\sqrt{2} + 1\right)}{1} = 6 + 3\sqrt{2}$	A1	1.1b
		(3)	
(ii)	$4^{3x-2} = \frac{1}{2\sqrt{2}} \Longrightarrow 2^{6x-4} = 2^{\frac{3}{2}}$	M1	2.5
	$6x - 4 = -\frac{3}{2} \Longrightarrow x = \dots$	dM1	1.1b
	$x = \frac{5}{12}$	A1	1.1b
		(3)	
		(6	marks)

Notes

- (i)
- M1: Combines the terms in x, factorises and divides to find x. Condone sign slips and ignore any attempts to simplify $\sqrt{18}$

Alternatively squares both sides $x\sqrt{2} - \sqrt{18} = x \Longrightarrow 2x^2 - 12x + 18 = x^2$

- **dM1:** Scored for a complete method to find *x*. In the main scheme it is for making *x* the subject and then multiplying both numerator and denominator by $\sqrt{2} + 1$ In the alternative it is for squaring both sides to produce a 3TQ and then factorising their quadratic equation to find *x*. (usual rules apply for solving quadratics)
- A1: $x = 6 + 3\sqrt{2}$ only following a correct intermediate line. Allow $\frac{6+3\sqrt{2}}{1}$ as an intermediate line. In the alternative method the $6 - 3\sqrt{2}$ must be discarded.

(ii)

M1: Uses correct mathematical notation and attempts to set both sides as powers of 2 or 4. Eg $2^{\alpha x+b} = 2^{c}$ or $4^{\alpha x+e} = 4^{f}$ is sufficient for this mark. Alternatively uses logs (base 2 or 4) to get a linear equation in x. $4^{3x-2} = \frac{1}{2\sqrt{2}} \Rightarrow \log_2 4^{3x-2} = \log_2 \frac{1}{2\sqrt{2}} \Rightarrow 2(3x-2) = \log_2 \frac{1}{2\sqrt{2}}$. Or $4^{3x-2} = \frac{1}{2\sqrt{2}} \Rightarrow 3x-2 = \log_4 \frac{1}{2\sqrt{2}}$

Or
$$4^{3x-2} = \frac{1}{2\sqrt{2}} \Longrightarrow 4^{3x} = 4\sqrt{2} \Longrightarrow 3x = \log_4 4\sqrt{2}$$

dM1: Scored for a complete method to find x.

Scored for setting the indices of 2 or 4 equal to each other and then solving to find x. There must be an attempt on both sides.

You can condone slips for this mark Eg bracketing errors $4^{3x-2} = 2^{2x^3x-2}$ or $\frac{1}{2\sqrt{2}} = 2^{-1+\frac{1}{2}}$ In the alternative method candidates cannot just write down the answer to the rhs. So expect some justification. E.g. $\log_2 \frac{1}{2\sqrt{2}} = \log_2 2^{-\frac{3}{2}} = -\frac{3}{2}$

or $\log_4 \frac{1}{2\sqrt{2}} = \log_4 2^{\frac{3}{2}} = -\frac{3}{2} \times \frac{1}{2}$ condoning slips as per main scheme or $3x = \log_4 4\sqrt{2} \Rightarrow 3x = 1 + \frac{1}{4}$

A1: $x = \frac{5}{12}$ with correct intermediate work

Q4.

Question	Scheme		AOs	
	$\frac{9^{x-1}}{3^{y+2}} = 81 \Longrightarrow \frac{3^{2x-2}}{3^{y+2}} = 3^4 \text{ or } \frac{9^{x-1}}{3^{y+2}} = 81 \Longrightarrow \frac{9^{x-1}}{9^{\frac{1}{2}(y+2)}} = 9^2$	M1	1.1b	
	$\Rightarrow 2x - 2 - y - 2 = 4 \Rightarrow y = \text{ or } \Rightarrow x - 1 - \frac{1}{2}y - 1 = 2 \Rightarrow y =$	dM1	1.1b	
	$\Rightarrow y = 2x - 8$	A1	1.1b	
		(3)		
	Eg. $\log_3\left(\frac{9^{x-1}}{3^{y+2}}\right) = \log_3 81$	M1	1.1b	
Alt	$\Rightarrow (x-1)\log_3(9^{x-1}) - (y+2)\log_3(3^{y+2}) = 4$ $\Rightarrow 2(x-1) - y - 2 = 4 \Rightarrow y =$	dM1	1.1b	
	$\Rightarrow y = 2x - 8$	A1	1.1b	
	(3 marks)			
	Notes			
M1: Attempts to set 9^{x-1} and 81 as powers of 3. Condone $9^{x-1} = 3^{2x-1}$ and $9^{x-1} = 3^{3x-3}$.				
Alternatively attempts to write each term as a logarithm of base 3 or 9. You must see the base written to award this mark.				
dM1: Attempts to use the addition (or subtraction) index law, or laws or logarithms, correctly and rearranges the equation to reach y in terms of x . Condone slips in their rearrangement.				
A1 : $y = 2x$	A1 : $y = 2x - 8$			

Q5.

Question	Scheme	Marks	AOs
	$\int \frac{3x^4 - 4}{2x^3} \mathrm{d}x = \int \frac{3}{2}x - 2x^{-3} \mathrm{d}x$	M1 A1	1.1b 1.1b
	$=\frac{3}{2} \times \frac{x^{2}}{2} - 2 \times \frac{x^{-2}}{-2} (+c)$	dM1	3.1a
	$=\frac{3}{4}x^{2}+\frac{1}{x^{2}}+c$ o.e	A1	1.1b
		(4)	
		(4 n	narks)
Notes:			
(i) M1: Attemp	ots to divide to form a sum of terms. Implied by two terms with one cor	rect index.	-

$$\frac{3x}{2x^3} - \frac{4}{2x^3} dx$$
 scores this mark.

A1: $\int \frac{3}{2}x - 2x^{-3} dx$ o.e such as $\frac{1}{2} \int (3x - 4x^{-3}) dx$. The indices must have been processed on both terms. Condone spurious notation or lack of the integral sign for this mark.

dM1: For the full strategy to integrate the expression. It requires two terms with one correct index. Look for $=ax^{p} + bx^{q}$ where p = 2 or q = -2

A1: Correct answer $\frac{3}{4}x^2 + \frac{1}{x^2} + c$ o.e. such as $\frac{3}{4}x^2 + x^{-2} + c$

Q6.

Part	Working or answer an examiner might expect to see	Mark	Notes
	$2^{x} \times (2^{2})^{y} = 2^{-\frac{3}{2}} \implies 2^{x+2y} = 2^{-\frac{3}{2}}$	М1	This mark is given for writing all terms in the same base and applying an index law
	$x + 2y = -\frac{3}{2}$	M1	This mark is given for writing an equation to link x and y
	$y = -\frac{1}{2}x - \frac{3}{4}$	A1	This mark is given for rearranging to find a correct expression of y as a function of x
	(Total 3 marks)		