Questions

Q1.

A student was asked to give the exact solution to the equation

$$
2^{2 x+4}-9\left(2^{x}\right)=0
$$

The student's attempt is shown below:

$$
\begin{aligned}
& 2^{2 x+4}-9\left(2^{x}\right)=0 \\
& 2^{2 x}+2^{4}-9\left(2^{x}\right)=0 \\
& \text { Let } 2^{x}=y \\
& y^{2}-9 y+8=0 \\
& (y-8)(y-1)=0 \\
& y=8 \text { or } y=1 \\
& \text { So } x=3 \text { or } x=0
\end{aligned}
$$

(a) Identify the two errors made by the student.
(b) Find the exact solution to the equation.

Q2.

Find, using algebra, all real solutions to the equation
(i) $16 a^{2}=2 \sqrt{a}$
(ii) $b^{4}+7 b^{2}-18=0$

Q3.

In this question you must show all stages of your working.
Solutions relying on calculator technology are not acceptable.
(i) Solve the equation

$$
x \sqrt{2}-\sqrt{18}=x
$$

writing the answer as a surd in simplest form.
(ii) Solve the equation

$$
\begin{equation*}
4^{3 x-2}=\frac{1}{2 \sqrt{2}} \tag{3}
\end{equation*}
$$

Q4.

In this question you should show all stages of your working.
Solutions relying on calculator technology are not acceptable.
Given

$$
\frac{9^{x-1}}{3^{y+2}}=81
$$

express y in terms of x, writing your answer in simplest form.

Q5.

Find

$$
\int \frac{3 x^{4}-4}{2 x^{3}} \mathrm{~d} x
$$

writing your answer in simplest form.

Q6.

Given

$$
2^{x} \times 4^{y}=\frac{1}{2 \sqrt{2}}
$$

express y as a function of x.

Mark Scheme

Q1.

Question	Scheme		Marks	AOs
(a)	$2^{2 x}+2^{4}$ is wrong in line $2-$ it should be $2^{2 x} \times 2^{4}$		B1	2.3
	In line $4,2^{4}$ has been replaced by 8 instead of by 16		B1	2.3
			(2)	
(b)	$\begin{aligned} & \quad \text { Way } 1 \\ & 2^{2 x+4}-9\left(2^{x}\right)=0 \\ & 2^{2 x} \times 2^{4}-9\left(2^{x}\right)=0 \\ & \text { Let } 2^{x}=y \\ & 16 y^{2}-9 y=0 \end{aligned}$	Way 2 $(2 x+4) \log 2-\log 9-x \log 2=0$	M1	2.1
	$\begin{aligned} & y=\frac{9}{16} \text { or } y=0 \\ & \text { So } x=\log _{2}\left(\frac{9}{16}\right) \text { or } \frac{\log \left(\frac{9}{16}\right)}{\log 2} \\ & \text { o.e. with no second answer. } \end{aligned}$	$x=\frac{\log 9}{\log 2}-4$ o.e.	A1	1.1 b
			(2)	
			(4 marks)	
(a) B1: Lists error in line 2 (as above) NotesB1: Lists error in line 4 (as above)(b) M1: Correct work with powers reaching this equationA1: Correct answer here - there are many exact equivalents				

Q2.

Question	Scheme	Marks	AOs
(i)	$16 a^{2}=2 \sqrt{a} \Rightarrow a^{\frac{3}{2}}=\frac{1}{8} \quad \begin{aligned} & 16 a^{2}-2 \sqrt{a}=0 \\ & \Rightarrow 2 a^{\frac{1}{2}}\left(8 a^{\frac{3}{2}}-1\right)=0 \\ & \Rightarrow a^{\frac{3}{2}}=\frac{1}{8} \end{aligned}$	M1	1.1b
	$\Rightarrow a=\left(\frac{1}{8}\right)^{\frac{2}{3}} \quad \Rightarrow a=\left(\frac{1}{8}\right)^{\frac{2}{3}}$	M1	1.1b
	$\Rightarrow a=\frac{1}{4} \quad \Rightarrow a=\frac{1}{4}$	A1	1.1b
	Deduces that $a=0$ is a solution	B1	2.2a
		(4)	
(ii)	$b^{4}+7 b^{2}-18=0 \Rightarrow\left(b^{2}+9\right)\left(b^{2}-2\right)=0$	M1	1.1b
	$b^{2}=-9,2$	A1	1.1b
	$b^{2}=k \Rightarrow b=\sqrt{k}, k>0$	dM1	2.3
	$b=\sqrt{2},-\sqrt{2}$ only	A1	1.1b
		(4)	
(8 marks)			

Notes

(i)

M1: Combines the two algebraic terms to reach $a^{ \pm \frac{3}{2}}=C$ or equivalent such as $(\sqrt{a})^{3}=C$
($C \neq 0$)
An alternative is via squaring and combining the algebraic terms to reach $a^{ \pm 3}=k, k>0$

$$
\text { E.g. } \quad \ldots a^{4}=\ldots a \Rightarrow a^{ \pm 3}=k \quad \text { or } \quad \ldots a^{4}=\ldots a \Rightarrow \ldots a^{4}-\ldots a=0 \Rightarrow \ldots a\left(a^{3}-\ldots\right)=0 \Rightarrow a^{3}=\ldots
$$

Allow for slips on coefficients.
M1: Undoes the indices correctly for their $a^{\frac{m}{n}}=C \quad$ (So M0 M1 A0 is possible)
You may even see logs used.
A1: $a=\frac{1}{4}$ and no other solutions apart from 0 Accept exact equivalents Eg 0.25
B1: Deduces that $a=0$ is a solution.
(ii)

M1: Attempts to solve as a quadratic equation in b^{2}
Accept $\left(b^{2}+m\right)\left(b^{2}+n\right)=0$ with $m n= \pm 18$ or solutions via the use of the quadratic
formula Also allow candidates to substitute in another variable, say $u=b^{2}$ and solve for u
A1: Correct solution. Allow for $b^{2}=2$ or $u=2$ with no incorrect solution given.
Candidates can choose to omit the solution $b^{2}=-9$ or $u=-9$ and so may not be seen
dM1: Finds at least one solution from their $b^{2}=k \Rightarrow b=\sqrt{k}, k>0$. Allow $b=1.414$
A1: $b=\sqrt{2},-\sqrt{2}$ only. The solution asks for real values so if $3 i$ is given then score A0

Answers with minimal or no working:

In part (i)

- no working, just answer(s) with they can score the B1
- If they square and proceed to the quartic equation $256 a^{4}=4 a$ oe, and then write down the answers they can have access to all marks.

In part (ii)

- Accept for 4 marks $b^{2}=2 \Rightarrow b= \pm \sqrt{2}$
- No working, no marks.

Q3.

Question	Scheme	Marks	AOs
(i)	$x \sqrt{2}-\sqrt{18}=x \Rightarrow x(\sqrt{2}-1)=\sqrt{18} \Rightarrow x=\frac{\sqrt{18}}{\sqrt{2}-1}$	M1	1.1b
	$\Rightarrow x=\frac{\sqrt{18}}{\sqrt{2}-1} \times \frac{\sqrt{2}+1}{\sqrt{2}+1}$	dM1	3.1a
	$x=\frac{\sqrt{18}(\sqrt{2}+1)}{1}=6+3 \sqrt{2}$	A1	1.1b
		(3)	
(ii)	$4^{3 x-2}=\frac{1}{2 \sqrt{2}} \Rightarrow 2^{6 x-4}=2^{\frac{3}{2}}$	M1	2.5
	$6 x-4=-\frac{3}{2} \Rightarrow x=\ldots$	dM1	1.1b
	$x=\frac{5}{12}$	A1	1.1b
		(3)	
(6 marks)			

Notes

(i)

M1: Combines the terms in x, factorises and divides to find x. Condone sign slips and ignore any attempts to simplify $\sqrt{18}$
Alternatively squares both sides $x \sqrt{2}-\sqrt{18}=x \Rightarrow 2 x^{2}-12 x+18=x^{2}$
dM1: Scored for a complete method to find x. In the main scheme it is for making x the subject and then multiplying both numerator and denominator by $\sqrt{2}+1$
In the alternative it is for squaring both sides to produce a 3 TQ and then factorising their quadratic equation to find x. (usual rules apply for solving quadratics)

A1: $\quad x=6+3 \sqrt{2}$ only following a correct intermediate line. Allow $\frac{6+3 \sqrt{2}}{1}$ as an intermediate line.
In the alternative method the $6-3 \sqrt{2}$ must be discarded.
(ii)

M1: Uses correct mathematical notation and attempts to set both sides as powers of 2 or 4 .
Eg $2^{a x+b}=2^{c}$ or $4^{a x+e}=4^{f}$ is sufficient for this mark.
Alternatively uses logs (base 2 or 4) to get a linear equation in x.
$4^{3 x-2}=\frac{1}{2 \sqrt{2}} \Rightarrow \log _{2} 4^{3 x-2}=\log _{2} \frac{1}{2 \sqrt{2}} \Rightarrow 2(3 x-2)=\log _{2} \frac{1}{2 \sqrt{2}}$.
Or $4^{3 x-2}=\frac{1}{2 \sqrt{2}} \Rightarrow 3 x-2=\log _{4} \frac{1}{2 \sqrt{2}}$
Or $4^{3 x-2}=\frac{1}{2 \sqrt{2}} \Rightarrow 4^{3 x}=4 \sqrt{2} \Rightarrow 3 x=\log _{4} 4 \sqrt{2}$
dM1: Scored for a complete method to find x.
Scored for setting the indices of 2 or 4 equal to each other and then solving to find x.
There must be an attempt on both sides.
You can condone slips for this mark Eg bracketing errors $4^{3 x-2}=2^{2 \times 3 x-2}$ or $\frac{1}{2 \sqrt{2}}=2^{-1+\frac{1}{2}}$
In the alternative method candidates cannot just write down the answer to the rhs.
So expect some justification. E.g. $\log _{2} \frac{1}{2 \sqrt{2}}=\log _{2} 2^{-\frac{3}{2}}=-\frac{3}{2}$
or $\log _{4} \frac{1}{2 \sqrt{2}}=\log _{4} 2^{\frac{3}{2}}=-\frac{3}{2} \times \frac{1}{2}$ condoning slips as per main scheme
or $3 x=\log _{4} 4 \sqrt{2} \Rightarrow 3 x=1+\frac{1}{4}$
A1: $\quad x=\frac{5}{12}$ with correct intermediate work

Q4.

Q5.

Question	Scheme	Marks	AOs
	$\int \frac{3 x^{4}-4}{2 x^{3}} \mathrm{~d} x=\int \frac{3}{2} x-2 x^{-3} \mathrm{~d} x$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$=\frac{3}{2} \times \frac{x^{2}}{2}-2 \times \frac{x^{-2}}{-2} \quad(+c)$	dM1	3.1a
	$=\frac{3}{4} x^{2}+\frac{1}{x^{2}}+c \quad$ o.e	A1	1.1b
		(4)	
(4 marks)			

Notes:

(i)

M1: Attempts to divide to form a sum of terms. Implied by two terms with one correct index.
$\int \frac{3 x^{4}}{2 x^{3}}-\frac{4}{2 x^{3}} \mathrm{~d} x$ scores this mark.

A1: $\int \frac{3}{2} x-2 x^{-3} \mathrm{~d} x$ o.e such as $\frac{1}{2} \int\left(3 x-4 x^{-3}\right) \mathrm{d} x$. The indices must have been processed on both terms. Condone spurious notation or lack of the integral sign for this mark.
dM1: For the full strategy to integrate the expression. It requires two terms with one correct index. Look for $=a x^{p}+b x^{q}$ where $p=2$ or $q=-2$

A1: Correct answer $\frac{3}{4} x^{2}+\frac{1}{x^{2}}+c$ o.e. such as $\frac{3}{4} x^{2}+x^{-2}+c$

Q6.

Part	Working or answer an examiner might expect to see	Mark	Notes
$2^{x} \times\left(2^{2}\right)^{y}=2^{-\frac{3}{2}} \Rightarrow 2^{x+2 y}=2^{-\frac{3}{2}}$	M1	This mark is given for writing all terms in the same base and applying an index law	
	$x+2 y=-\frac{3}{2}$	M1	This mark is given for writing an equation to link x and y
$y=-\frac{1}{2} x-\frac{3}{4}$	A1	This mark is given for rearranging to find a correct expression of y as a function of x	

